

Guityab on from Janfeb issue the Hunter Valley VZ Journal Whi w mbissned Bi-Monthiy for the forseeable future. This Will biag us in inge mith other va Publications and also give us more the to produce a better quality journal.

Page 3
Out ist of VZ USer Groups and Fublications is growing.
BNOOFY GAbENADR PAET 2 by Dave Boyce :-
Pages 4-5
Tha; concludes insting of Snoopy Calendar. The lines of hashes are simply a guide to help you when you are typing in.

PRINTERAROMER SECTION by Dave Boyce :-
Page 6
Dave shows you how to convert Snoopy Calendar for Rannturlotier use.

DiEK DKIVE HINTS \& TIPS:-
Pages 5 \& 10
RAM GOMRUNICATIONS AREA by David Mitchell (C) Pages 7-8
Dave has put in a lot of time and effort in compiling the Aist and a lot of $V Z$ users will appreciate his sharing the result, Oi has iabours. Thanks Dave. There are a few gaps in the list and we would like your help in filling them.

KOM GUERGE CHARACTER SET by Bob KITCH (C) Pages 9-10
Bub: article explains in his usual thorough way how inverse Chaxacters are stored in ROM an why they wont print out on most Doi hairix Praters. A screen dump is shown at end of listing.

The MAGIG YZ -- UTILITY REVIEW :- Pages 11-12
The next best thing to a disk drive when you don't have a disk drive or how to live without one when you can't afford one let alonc two or three.

UTILITY SEVIEif by baxry Taylor (C) :- Page 13
FILEGEARCH $1: 3$ a u ility that can be used both by tape or disk drive owners. It gives quite a lot of information on your programis. This is Larry's first contribution to our Journal and we welcomr: nim aboard.

CONVERNMM TADE MATLING LIST FOR DISK USE :- Page 14
D. smita haf available quite a few Technical Bulletins for the vZ. Juiietin lil is reproduced by kind permission D.Smith Computor Boer buppurt.

BEGINNER'S GEOTION wy Leigh Rogers :- Pages 15-16
In her easy to follow style leigh takes you line by line axplamang as she gues along.

ENHANGTNG YZ BASIC by Larry Taylor (C) :- Pages 17-19
Jhis issue has our our first assembiy listing. The basic version wit appear in next issue and intending assembly learners will fand it helpfull.

VIDEO OLSPAY TORKSHEET (MODE O) :-
Page 20
BELIEUL A' OR NOT :..
Tho femaie computers were overheard gossiping. (Via their speeth تyothesisors - Ed.). One asked the other. "How did your honeymun zo" ? "terrible", replied the other, "He left his Joystack at home".

15v1E EGACHO
Since our commente last month we had a few NBBLES. Here are some of the comments.

Dave Boyce - It is nice to receive a Mag. (sorry Journal) that is pages thick. Dave also suggested that we do an annual inder together with notes and errata. Thanks for the suggestion Dave, we had something similiar in mind.

Scott Le Brun - I've been reading the Jan/Feb issue of your Journal and IT'S GREAT. Thanks Scott. The RESTORE article, I found very useful, as I sometimes accidentally NEW a proginam and it's not stored on tape. Take a bow Dave Mitchell.

With this issue we are introducing a new service to our members on a trial basis. Most programs appearing in this Journal can be obtained from Hunter Valley VZ Users Group simply by sending a TAPE or DISK together with return POSTAGE and PACKING included. When sending disks make sure you use stiff cardboard as support as the postman likes folding disks in half to fit in your letter box. ' P ' plates are ideal as support.

VZ USER
MARK HARWOOD
P.O. BOK 154

DURAL 2158
N.S.W.
\$15.00 PER ANUM

UZ DOWN UNDER
C:- GEORGE SEGGIE
P.O. BOX 316

ST. KILDA 3182
VICTORIA

LE'VZ 200/300 OOP
J.C.E. D'ALTON

39 AGNES STreet
TOOWONG 406E
QUEENSLAND
\$2.00 PER ISSUE (min \$4.00) VSOFTWAREZ
Software/Hardware for sale.
MICRO-MAGIC
GORDON BROWELL
13 BROOKES St.
BIGGENDEN 4621
QUEENSLAND

Software/Hardware for sale
NOTE :- When writing to any above or H.V.VZ. Users' Group for information please enclose a S.S.A.E. (Stamped Self Addressed Envelope).

HIMMTEF*	val ver	USEF゙S	GFamelt
PETER ELLIS	PRESIDENT	(049)	695697
MARK O'BRIEN	VICE PRES	DENT . (049)	615490
ROSS WOODS	SECRETARY	(049)	712843
LEIGH ROGERS	TREASURER	. (049)	575738
JOE LEON	- EDITOR	. (049)	512756

MAIL ALL SUBMISSIONS TO :-
HUNTER VALLEY ' $\because Z$ USERS' GROUP
Cノ- P.O. BOX 161 JESHOND
N.S.W. 2299

No MATERIAL in this Journal may be reproduced in part or whole without the written permission of the Author and or Hunter Valley VZ Users' Group.

```
BAO LPPEIN:
```



```
B00 LTROM",AB(SO):"
```



```
1072 E.ssm""XCX 又又
```



```
10g2 is&".."" 大 < <""
```



```
                                    K8X
                                    KNX水水
                                    XKXKXK人XXKKXスKKX * * % ";
```



```
&50 LP&wMTAB(50);"
```



```
12OZ T&R", "" NX"
```



```
1252 [T& NO" < <"
```



```
1260 *
```



```
1272 צ M!MT" K"
```



```
"DTY LPRTN"? \(X^{\prime \prime}\)
```



```
1312 LPKME" \(\quad X K X X X X^{\prime \prime}\)
```



```
135 HPRDNT"MXXXX"
```



```
1360 5R1以T
1360 125.3UXM
1300 my
1500 1ER"ow00pyC土"
\(1000 \%\) OU"SNOOPYCL":CLS:DIR
```


Hinte for the vz abound white onos for the disk arive ine fob
and far butbeen. Hexe are some you may find usetul?.
How many tames have you Run a Froxram without GAVING it tixst
and lust it adi bucuuse the vZ or drive harg up. fear bat,

1500 SRの" 5 ! ERNANE"

COTO 1900
This G：？EAvE your program，olear the scruen anci shtu yon

CO：0 1500
Provaded you a Have disk in the drive dine 1500 will frast
 prozras．

CHANGING SNOOPY CALENDAR FOR PRINTER/PLOTTER USE by Dave Boyce.
Now that You have typed in Part 2 of the Calendar we can procede. Load in the completed program and follow the instructions given below.

Delete Lines 162, 348, 558 and 820.
Type in -: SAVE"SNOCALPP" and press RETURN. (DISK SAVE)
Type in -: CSAVE"SNOOPY/CAL" and press RETURN. (TAPE SAVE)
Add Lines $70,80,160,285,595$ and 1255 as Listed below.
Change Lines 90 to $120,345,365,375,385,552,580,585$, 590, 830 and 1500 as Listed below.

Also change the TAB(30)'s in Lines 850 to 1350 to TAB(15)'s as the example shows below.

Type in -: GOTO 1500 and press RETURN. (DISK SAVE)
Type in -: GOTO 1600 and press RETURN. (TAPE SAVE)
NOTE :- In case of DISK SAVE use line 1500 and line 1600 for TAPE SAVE whenever insructions call for program SAVE.

```
70',FILE - SNOCALPP
80, ## SNOOPY CALENDAR ##
90, FOR THE PRINTER/PLOTTER ONLY
100 , ## LINE 160 WILL SET YOUR PRINTER/PLOTTER
105, IN THE CORRECT MODE
110, ### RUN LINE 595 TO RETURN TO TEXT MODE
120 ' IF LEAVING PROGRAM PREMATURELY
160 LPRINTCHR$(18):LPRINT"SO":LPRINTCHR$(17)
285 LPRINT
345 LPRINT:LPRINT:LPRINT
365 LPRINTB$
375 LPRINT:LPRINT
385 LPRINT:LPRINTA$
552 GOSUB830:' SOOPY PRINTOUT
580 CLS:INPUT"ANOTHER YEAR ";YY$:IFYY$="Y"THEN RUN ELSE 595
585 END
590 , ### RETURN TO TEXT MODE
595 LPRINTCHR$(18):LPRINT"S1":LPRINTCHR$(17)
330 , SNOOPY PRINTOUT
345 '----5----5---X#####X#####X#####X#####X#####X#####X#####X##X
850 LPRINTTAB(15);" XXXX"
360 LPRINTTAB(15);"" X XX"
1255 ,----5----5---X#####X#####X#####X#####X#####X#####X#####X#X
1400 :
1450 :
1500 ERA"SNOCALPP":SAVE"SNOCALPP":DIR:' THIS LINE FOR DISK ONLY
1550 :
1560 :
1600 CSAVE"SNOOPY/CAL":'TAPE USERS USE THIS LINE TO SAVE PROGRAM
```


30887-8 78A7-8 KEYBOARD BUFFER ADDRESS
30889 78A9 ?
30890-3 78AA-D RANDOM NUMBER SEED
30894 78AE VARIABLE FLAG
30895 78AF NUMBER FLAG (INTEGER,STRING,SINGLE,DOUBLE)
30896 78BO EXPRESSION EVALUATION
30897-8 78B1-2 TOP OF MEMORY
30899-900 78B3-4 NEXT LOCATION IN LITERAL STRING POOL
30901-2 78B5-6 START OF LITERAL STRING POOL
30903-45 78B7-E1 ?
30946-7 78E2-3 CURRENT LINE NUMBER
30948-9 78E4-5 AUTO INCREMENT
30950-1 78E6-7 LAST BYTE EXECUTED IN CURRENT LINE
30952-3 78E8-9 BACKSPACED STACK ADDRESS
30954-5 78EA-B ERROR LINE NUMBER
30956-7 78EC-D ERROR LINE NUMBER
30958-9 78EE-F CURSOR POSITION IN LINE WITH ERROR
30960-1 78FO-1 ADDRESS OF STATEMENT TO RESUME AT
30962 78F2 ERROR MESSAGE OVERRIDE
30963-4 78F3-4 ?
30965-6 78F5-6 LINE NUMBER ENDED ON
30967-8 78F7-8 LAST STATMENT BYTE SCANNED
30969-70 78FG-A END OF PROGRAM
30971-2 78FB-C START OF DIM VARIABLES TABLE
30973-4 78FD-E START OF FREE MEMORY
30975-6 78FF-900 DATA POINTER (READ STATEMENT)
30977-1002 7901-1A VARIABLE DECLARATION TABLE
31003 791B TRACE FLAG
31004 791C MATH ROUTINES
$31005-31012791 D-7924$ regester 1
INTEGER SINGLE DOUBLE

31005	$791 D$			LSB
31006	$791 E$			LSB
31007	$791 F$			LSB
31008	7920			LSB
31009	7921	LSB	LSB	LSB
31010	7922	MSB	LSB	LSB
31011	7923		MSB	MSB
31012	7924		EXP	EXP

31013-4 7925-6 MATH ROUTINES
31015-22 7927-E REG 2 SAME AS REG 1
31023 792F ?
31024-49 7930-49 PRINTER BUFFER
31050-7 794A-51 DOUBLE PRECISSION MATH
$31058-311417952-79 A 5$ TRS-80 DOS RESERVED WORDS
31141 - 31204 79A6 - 79E4 TRS-80 DOS LINKS
31205-7 79E5-7 USED BY INPUT
31208-72 79E8-7A28 BASIC LINE INPUT BUFFER
31273 - 31388 7A29 - 7A9C?
31389 - 31404 7AGD - 7AAC TAPE NAME
$31405-31446$ 7AAD - 7AD6?
31447 - 31462 7AD7 - 7AE6 TAPE LOAD ROUTINE
31463-4 7AE7-8 ZERO
31465 TAEG START OF USER MEMORY
36864 GOOO TOP OF MEMORY VZ-200 (6K)
45184 B800 TOP OF MEMORY VZ-300 (16K)
53348 DOOO TOP OF MEMORY VZ-200 (16K)
63488 F800 TOP OF MEMORY VZ-300 ($16 \mathrm{~K}+16 \mathrm{~K}$)
65535 FFFF THE UERY TOP
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊DISPLAY INUERSE CHARACTER $* * *$
＊＊＊SET IN ROM＊＊＊
水＊ AS USED BY DOT MATRIX＊＊＊
＊＊＊
PRINTER＊＊＊
＊＊＊R．B．KITCH 27／9／86＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

140 ＇IN THE VZ COMPUTER A TABLE OF SHAPES IS LOCATED AT
150 ＇ 3 B 94 H TO 3CD3 IN ROM．THERE ARE 64 CHARACTERS，EACH USING
160 ＇5 BYTES TO DEFINE THEIR GRAPHIC SHAPE．THE SHAPES MAY BE
170 ＇DECODED AND OUTPUT TO THE SCREEN AS IS DONE IN THIS
180 ＇PROGRAM．NOTE THAT THERE ARE SOME ERRORS IN THE ROM．
190 ，THE 5 BYTES DEFINE A 5 BY 8 DOT MATRIX WHICH IS THE SHAPE
200^{\prime} OF THE CHARACTER，WHICH INCIDENTLY ARE NOT ORDERED
210 ＇ACCORDING TO THE ASCII CODE．
220 ，THE FIRST BYTE DEFINES THE LEFT HAND EDGE OF THE CHARACTER－
230 ，WHICH IS THE FIRST PRINTED DURING A PASS OF THE PRINTER
240 ＇HEAD．IN TANDY PRINTERS THE MSB IS THE LOWERMOST PIN CF THE
$250{ }^{\prime}$ HEAD AND THE LSB IS THE UPPERMOST PIN．THE PINS ON EPSON
2GO PRINTER HEADS ARE ARRANGED IN THE OPPOSITE SENSE．THIS
270 ，REQUIRES THAT THE BITS IN EACH BYTE BE REVERSED．

300

DIM MK\％（7）：＇＊＊＊VECTOR OF BIT MASK VALUES－POWERS OF 己
DIM BT\％（7）：＇＊＊＊VECTOR OF DECODED BITS FROM ROM VALUE．
，＊＊＊FILL MASK VECTOR WITH POWERS OF 2 FOR DECODING．
FOR $I \%=0$ TO $7: M K \%(I \%)=2^{\wedge} I \%: \operatorname{IEXT} I \%$
，
＇＊＊＊INITIALIZE PARAMETERS－MAY BE CHANGED TO VARY SCEEEN．
$\mathrm{CC} \%=4 \quad: ’ * * * C H A R A C T E R ~ C O L O U R . ~(1-4)$
$\mathrm{BC} \%=2 \quad:{ }^{\prime} * * *$ BACKGROUND COLOUR．（1－4）
$\mathrm{CS} \%=0 \quad: \quad * * * \mathrm{COLOUR}$ SET．（ $0-1$ ）
CW\％$=3$ ：$* * *$ COLUMN WIDTH BETWEEN CHARACTERS．
SP\％＝16 ：${ }^{\prime} * * *$ ROW SPACING FOR CHARACTERS．
HS\％$=0 \quad{ }^{\prime} * * * S T A R T I N G$ HORIZONTAL POSITION ON HI－RES SCREEN．
VP\％＝3 ：＇＊＊＊STARTING VERTICAL POSITION ON HI－RES SCREEN．

，＊＊＊SET UP MAIN LOOP TO STEP THROUGH ROM FROM 3B94H－3CD3．
$\mathrm{BK} \%=0$
：＇＊＊＊BYTE COUNTER FOR EACH CHARACTER．
$\mathrm{HF} \%=\mathrm{HS} \%$
：＇水冰SET HORIZONTAL POSITION TO STAR＇T
：＊$* * *$ 氺ET HI－RES SCREEN AND COLOR SET．
FOR AD $=15252$ TO 15571 ：$* * * R O M$ ADDRESSES FOR SHAPE TAFLE．
$D V \%=P E E K(A D \%) \quad: ' * * * D E C I M A L$ VALUE IN ROM．
，＊＊＊DECODE THE INDIVIDUAL BITS OF DV\％AND STORE IN BT\％（）．
＇＊＊＊THE MASK VALUES IN MK\％（）ARE＂ANDED＂WITH THE VALUE．
＇＊＊＊THE RESULT STORED IN BT\％（）IS THE＂COLOUR＂OF THE BIT．
FOR I $\%=0$ TO $7 \quad: * * * * P R O C E E D ~ F R O M ~ L S B ~ T O ~ M S B . ~$
IF DV\％AND $M K \%(I \%)$ THEN $B T \%(I \%)=B C \%$ ELSE BT\％（I\％）$=C(\% \%$ NEXT I \％
＇＊＊＊CHECK THAT THERE IS ENOUGH ROOM TO PLOT CHARACTER．
IF $B K \%=0$ AND $H M \%-H P \%<4$ THEN $H P \%=H S \%: V P \%=V P \%+S P \%$ ：＇ ，NEW ROW $\mathrm{BK} \%=\mathrm{BK} \%+1$
：＇＊＊＊INCREMENT BYTE COUNTER．

FGM IMVEFISE CHAF- SET GONT- - IG

840 ,

900 '***OUTPUT BYTE TO SCREEN.
910 FOR I\%=0 TO 7
920 COLOR BT\% (I\%) :'***SET COLOUR OF BIT.
930 SET (HP\%, VP\%+I\%) : '***PLOT BIT.
940 NEXT I \%
950 ,
$1000^{\prime} * * * P R E P A R E$ FOR NEXT BYTE.
$1010 \quad \mathrm{HP} \%=\mathrm{HP} \%+1 \quad:^{\prime} * * *$ INCREMENT HORIZONTAL POSITION.
1020 IF BK\%=5 THEN BK\%=0 :HP\%=HP\%+CW\% :'***NEW CHARACTER.
1030 NEXT AD\%
2000 GOTO 2000 :END

@ABCDEFGHIJKLMMO

OISHE DFIVE HINTS AND TIF•S

Most Dos commands can be used from within a program, but the DOS manual fails to inform you of the correct syntax. EG:-

100 IFA $\$=" D " T H E N D I R \quad$ This will not work although it's correct for BASIC, but not for the DOS.

100 IFA $\$=" D " T H E N: D I R \quad: A$ colon (:) must be added between THEN and DIR for it to work. The same goes for most other DCOS commands.

BREAK :- Although there's a BREAK function for basic the DOS Manual again fails to inform you of the DOS version. It could'rit be simpler. Just use the BREAK (-) MINUS key by itself without CTRL key. It will get you out of some problems but not all.

Anyone with any hints for the disk drive please let us know so we can share with other users.

Disk Drive ouners, the Magic VZ ie not for you, but tape owners rejoice as you can do Magic with your VZ. And how to accomplish this Magic ? Simple, just install a Magic Eoram in your VZ200/300 and away you go. The Magic Eprom is a $4 K$ Eprom that is written for the range $4000-4 F F F H E X$. It contains the following three utilities which are available seperately on tape. 1) EB1 - 2) MDR3 - 3) AR1 :-

EB1 - EXTENDED BASIC :-
All 45 missing TRS-BO Level 2 Keywords are translated into their Tokens and are listable any time. This gives you $1 G$ additional commandsfunctions and all the disk command exits which are very handy to link any M/L programs. Note that basic programs written with EBI will run on any other VZ even if commands/functions from the list below are used.

ADDITIONAL COMMANDS,FUNCTIONS :-
POS, FRE(X\$), MEM, ERR, ERL, FIX, CDBL, CSNG, CINT, ON, AUTO, DEFINT, DEFSNG, DEFDBL, DELETE, RANDUM, VARFTR, STRING\$, RESUME.

DISK COMMANDS,FUNCTIONS:-
LOF, LOC, EOF, CVD, CVS, CVI, DEF, PUT, GET, MKD\&, MKS\$, MKI\$, TIME\$, CMD, FN, LSET, RSET, OPEN, CLOSE, LOAD, SAUE, KILL, NAME, MERGE, FIELD, INSTE.

Information is Eiven on how to realise ON ERROR, TRON, TROFF and DEFSTR.

MDR3 - MERGE/DELETE/RENUMBER :-
The meroe routine will merge any number of basic programs ur to memory capacity. The only rule is that the program you wish to merge must have it's first line number higher than the last line of program in memory.

REN X, Z or REN $X-Y, Z$.
This is a particulary usefull RENUMEER routine. You can renumber whole or part of your program with choice of incremert.

DELETE $X, X-Y,-X:-\quad$ The specified Line(s) are deleted.
AR1 - ARRAY-UTILITYRESTORE N :-
This powerfull utility can dumf 800 records of 16 Charactere in less than 4 minutes onto tape. With this ARRAY Utility yak can SAVE or LOAD whole ARRAYS at the tape speed of 600 baud, regardless of the lenght or the number of dimensions. EESTOKE N enables you to move the DATA pointer for the READ command tu the first element of any DATA line in your program. Important, the array utility will only work if the basic program was written by an extended basic which accepts the disk commands LOAD, SAVE, KILL and NAME.

IMPORTANT NOTE :-
EB1 can be loaded with either MDR3 or AR1. They Gan but loaded any time without destroying a EASIC program. EB1, MDR3, AR1 and MAGIC EPROM are available from:-
W.Obrist EB1, MDR3 and AR1 are $\$ 15.00$ each. 50 Cobhara Ave. MAGIC EPROM is $\$ 45.00$.
They are last year's prices so check. West Ryde
W.S.W. 2114

State RAM size. EG: - $5 \mathrm{~K}, 24 \mathrm{~K}, \quad \mathrm{ETC}$.

This Eprom contains all three utilities debcrabed Frevaously EBl, MDRB and AF1. When correctly installed all fointers are changed duxing power up resulting in a very pompriuli VZ. The beauty of the Magic Eprom is that it morlis witi any memory size and all commands and functions are dvailable at power up.

The Erom is available as 2532 or 2732 , and don't forget to mention yous choice. To make your choice easier pinouts and connectang dircuit diagrams are shomn. I pisgy backed mine on a 2364 BK-ROM incide tho VZZOO. Some VZ2OO's and VZ300's have 16K ROMS and their pinouts are also shown.

Both the 2532 and 2732 Eproms will fit nicely on the 2364 Rom in VZzoo. Astericks are shown which fins to bend up when pisgy-backing on 2364 vZ Rom. On the 2532 two pins must be bent up while on 2.732 three are bent up and connected to the appropriate sisnals. Instead of soldering the Eprom directly to the kom a socket can be used. If piggy-backing on the 16 K Rom then the 2732 would be a better choice as only pins 18 and 24 need bending up. Study the circuits carefully before proceeding and take care.

FILESEARCH 2.0 (C) 1987

Copyright by L. Taylor - Distribution by VSOFTWAREZ
$==$
FILESEARCH is a utility program, consisting of two independent modules TAPESEARCH and DISKSEARCH, which provides useful information about programs stored on tape or disk. Although the data appears on the screen, selection of the printer option enables a printout to be obtained.

The initial letter identifies the type of program:
T: Basic Program
B: Machine Code Program
D: Data Files
W: Editor Assembler Source Code
TAPESEARCH reads the leader of programs and files stored on tape and prints the information in this form:

T:NAME OF PROGRAM 7AE9 BEA4 13BB
Following the program type and name, the start and end addresses and the length of the program will be printed, in hex. Dnly Data files do not have a start and end address.

TAPESEARCH will also identify Data Files saved using the D.S.E. Word Processor, which cannot be identified during normal tape operations. When the printer option is selected only Data Files which have a name are output to the printer although all files found are printed on the screen.

DISKSEARCH reads the disk directory, and prints the data in this form:

T:FILENAME OA O4 7AE9 8EA4 13BB
Following the filetype and filename the track and sector numbers, indicating where the data is stored on the disk, are displayed in hex form. Immediately after this the start and end addresses and the length of the program are printed, also in hex.

If the directory contains more than 13 entries, as the data is being printed, the screen will scroll. Pressing the SPACE bar will hold the displayed data. If the printer. option has been chosen, you can select, each time a directory is displayed, whether to output the data to the printer or not.

If a disk error occurs during reading, control will return to DISKSEARCH. Should the program not return from reading a disk, such as if an attempt is made to read an unformatted disk, control can be regained by pressing the BREAK key alone.

FILESEARCH can be safely used by non-disk owners as a check is made for the presence of the Disk Operating System before entering DISKSEARCH. Pressing the CONTROL and BREAK keys together, at any time, will enable a return to the start of the program.

```
TECHMNTEGM
```


UZ-300 MAILING LIST TAPE TO DISK FILE CONUERSION

Below are the changes to be done to the B.A.S.I.C. program to allow files to be saved on disk instead of tape for ($\mathrm{X}-7259$) Mailing List program.

Once you have LOADed Mailing List BREAK the program and type in the lines below pressing (RETURN) after each line.

1040 PRINTE 162,"2. READ DATA FROM DISK";
1080 PRINT@290, "6. WRITE DATA TO DISK";
5020 PRINT@270,"[WRITE DATA TO DISK]"
5030
5040
5050
5060
5070
5080
5110
5120
5205 ERA"MAILDATA"
5210 OPEN"MAILDATA", 1: PR\#"MAILDATA", DT
5230 PR\#"MAILDATA", D\$(N)
5240 NEXT:CLOSE"MAILDATA"
6020 PRINT@79,"[READ DATA FROM DISK]";
6030
6040
6050
6060
6070
6080
6100 OPEN"MAILDATA", O:IN\#"MAILDATA", DT:IF DT=OTHEN 6135
6120 IN\#"MAILDATA", D\$(N)
6135 CLOSE"MAILDATA"
7030 PRINT@199, "[FUNCTION COMPLETE]";
7050 SOUND 30,2:RETURN
Now SAVE"MAILLIST" to disk. Type NEW then press RETURN.
Type in and RUN program below.
10 OPEN"MAILDATA", 1
20 PR\#"MAILDATA", O
30 CLOSE"MAILDATA"
The above program has prepared the disk with the MAILLIST program to SAVE and READ files. The above program will never be used again.

Now you have finished just RUN"MAILLIST" and the instructions are as per old Mailing List program. The only difference is that it SAUES and LOADS files a lot faster.

Compiled by Jamie PERRY

Reproduced by kind permission of D.Smith's computer user support.

G'day! My last article, (which was also my first), seems to have hit the spot, so I 'm back for a sequel... (Anyone want to buy the Movie Rights ? - Ed.)

OK! You're in for a more complex one this time. This one covers a lot and demonstrates a lot of stuff. Like last time the program listing is given first, then each line and command is explained.

```
10 CLS
20 A=RND(100)
30 INPUT "GUESS MY NUMBER (0-100)";B
40 IF A>B INPUT "HIGHER";B
50 IF A<B INPUT "LOWER";B
60 IF A=B PRINT "THAT'S RIGHT":GOTO 80
70 GOTO 40
80 INPUT "TRY AGAIN (Y/N)";C$
90 IF C$="Y" GOTO 10
100 PRINT "TYPICAL HUMAN!":END
```

This is a simple little game where you can communicate with the computer. It will choose a number at random and you have to guess what the number is. You will be given clues like "HIGHER" or "LOWER". By looking at some of the features of this programme, you might be able to see how easy it is to write your own games.

10 CLS :Clears the screen.
$20 A=\operatorname{RND}(100)$
This is a feature we have not looked at yet. It is a function which enables the computer to chose a number at random. For this, we just print "RND" and straight after, you state (in brackets), the highest number you wish to be chosen. So if you were choosing lotto numbers, it would be : RND(40). Get it? In line 20, we have labelled our random number "A" by saying that "A=RND (100)".

30 INPUT "GUESS MY NUMBER (0-100)"; B
This is another function we have not yet tackled, but don't worry, it is not hard to understand. INPUT means that the computer is looking for an input from you. It has told you what sort of input it is looking for, by asking you to "GUESS MY NUMBER?". The PRINT and INPUT statements are very similar but there is one difference. The PRINT command simply prints a message on the screen, whereas the INPUT command both prints a message on the screen, and waits for a reaction from the user. Your reaction is then labelled with another variable: we have labelled the response "B". Don't forget the semi-colon (; , and there is no need to type in question marks on the VZ as it puts them up for you the moment it sees an INPUT statement.

40 IF $A>B$ INPUT "HIGHER"; B
This says exactly that : if the random number (A) is bigger than the response (B), then tell the user that it is higher, wait for another guess, and replace his or her last response (B) with the new response.

50 IF A<B INPUT "LOWER"; B
Again, this is easy to understand : if the random number (A) is lower than the response (B), then tell the user that his or her guess is too high, wait for another response, and again, label it B.

60 IF $A=B$ PRINT "THAT'S RIGHT":GOTO 80
This is the third thing that could possibly happen, he or she gets it right. It says that if his or her guess equals the random number, then print up that he or she is right. I have then redirected that part of the programme elsewhere by saying "GOTO 80".

70 GOTO 40
If you will notice, the majority of the programme will be running through lines 40,50 , and 60 . Once the computer has been through these lines, it would be a very short game if the computer were not sent back through them to let you have another go ... So we say "GOTO 40", (in other words keep asking me, do I want another go).

80 INPUT "TRY AGAIN (Y/N)";C\$
This is where line 60 sent the computer to. If you have guessed right, it asks you, "TRY AGAIN (Y/N)?". Again, it is waiting for a response and a simple thing like telling the user what sort of response to give, (Y/N) makes it all the easier for the user. You will notice that this response has been labelled "C\$". This is because only numbers can be labelled with a single letter variable. If the response is going to be a letter, it must have a dollar sign (\$) tacked on so the computer can distinguish between the two.

90 IF C\$="Y" GOTO 10
If our response ($C \$$) is "yes" (Y), start again at line 10. Notice that the response has been placed in "". This is also because it is a letter and not just a simple number. For some reason, a computer has no trouble dealing with numbers, (Only people - Ed.) but when letters are involved, the matter becomes a bit more complex.

100 PRINT "TYPICAL HUMAN!": END
I have put in a bit of cheek here. You must remember, that in line 90, there is a condition : "IF C $\$=" Y "$ GOTO 10". Only if C $\$$ is "Y", is that line obeyed. If the response is anything else, the computer will ignore the line and continue with the rest of the programme. Since it has been told to print up a message it will do so, which will probably surprise anybody else who sees it!. After the colon (:), it sees a fresh command which of course, tells it to finish up.

Anyway, that's it for this month. It is a long one but it should keep you going. See ya!

Enhancing VZ Basic by Larry Taylor

The Commodore 64 has advanced hardware supported by an inadequate Basic language, resulting in a number of ennanced Basics being available. Sometning similar could be produced for the VZ. It must be noted, however, that all such Basics share a common disadvantage. Any program which makes use cif them requires the language be loaded before it will function properly.

Because Basic is an interpreted language additional commands can be inserted, if they can be intercepted and executed before reaching the $V Z$'s own interpreter. This is precisely what happens when a disk operating system (DOS) 15 added. New commands enabling disk operations to te performed, supplement the existing Basic. However, all programs using those extra commands require the DOS to be present before execution or they will not be interpreted correctly.

When a Basic program is RUN, control passes to a machirie language ROM routine, the Execution Driver at 1 DSAH, which scans each line of the Basic program as it comes to it and begins to translate it. Part of the translation process involves looking for tokens. These are values in the range 128-250 (80H-FAH) that take the place of Basic reserved words e.g. CLS $=132(84 \mathrm{H})$. Once the word has been identified and checked for correct syntax, control is passed to the corresponding ROM routine before returning to continue the translation. This is similar to one persan issuing instructions to another through an interpreter, who first has to translate them before the receiver can act, and is the reason for Basic's slow execution. Most languages get around this problem by having the program translated ar compiled before execution.

Tandy's Colour Computer has an enchanced CLS command which enables the user to clear the screen to any one cif nine background colours. The syntax is CLSn, where n may be a number in the range 0-8. To illustrate how enhancements can be accomplished, this command will be added to the $V Z$'s repertoire.

On power up the address of the routine which examines each byte in a line of Basic, is stored at 7804 H . Because this address is in RAM it can be easily changed. This was done so that at a later stage the DOS could be includec. However, it also means that, just as readily, an enhanced form of Basic may be added. The trick is to ensure that, às far as the $v Z$'s interpreter is concerned, nothing unusual has happened. The accompanying assembly language listing shows how this can be accomplished.

Having adjusted the top of memory pointer, the address at 7804 H is stored and replaced by our own. The program then locates the new routine at the top of memory. Now each time a byte is to be examined during execution it must first pass through our checkpoint. Once the origin of the call is established, the routine looks for the CLS token, 132 (84 H). Only when it has been located does the routine proceed to examine the next byte. This is checked to see if it lies in the range 0-9. Once it has passed this test, the clear screen routine is implemented after first calculating the appropriate value with which to fill the screen. You will notice that not only is it necessary to check for the new command, but also to provide the routine which implements it. In this case a simple block load to the screen has been used. Control is then returned to the ROM processing routine, which prepares to examine the byte following our new command. So, as far as the $V Z$ knows, everything is continuing normally. Tricky isn't it?

I have already successfully used this approach to produce a $V Z$ Printer Patch, which enables all the normal printer functions for owners of EPSON or EPSON compatible printers. The COPY command is intercepted by the patch and as a result its function has been enhanced to allow a proper dump of both the LO-RES and HI-RES screens. One further enhancement that could be explored would be an extension of Basic's SOUND command. The possibilities are limited only by imagination and memory.

OOO1 ; \#
0002 ; \# ENHANCED CLS CDMMAND \#
0003 ; \# BY LARRY TAYLDR 1986 \#
OOO4 ; \#
0005 ;
OOO6; THIS SECTION RELOCATES
0007 ; THE PROGRAM TO THE TOP
OOOB ; OF AVAILABLE MEMDRY.
0009 ;
0010 VCTR EQU 7A28H
0011 LD SP,7700H
0012 LD $\mathrm{HL},(78 \mathrm{~B} 1 \mathrm{H})$
0013 LD BC,ENDP-NVCT
0014 PUSH BC
0015 XOR A
0016 SBC HL, BC
0017 LD (78B1H),HL
$0018 \quad$ PUSH HL
0019 XOR A
0020 LD BC, 33H
0021 SBC HL, BC
0022 LD (78AOH), HL
0023 POP DE
0024 INC DE
0025 LD HL, (7804H)
0026 LD (VCTR),HL
0027 LD (7804H), DE
0028 LD HL,NVCT
0029 POP BC
0030 LDIR
0031 CALL 1B4DH
0032 JP 1A19H


```
#
```


